Equilibrative-sensitive nucleoside transporter and its role in gemcitabine sensitivity.
نویسندگان
چکیده
Salvage of preformed nucleosides requires transport across the plasma membrane by sodium-dependent (concentrative) and sodium-independent (equilibrative) mechanisms. These transport systems are also the route of cellular uptake for nucleoside analogues, including gemcitabine (2',2'-difluorodeoxycytidine), a deoxycytidine analogue used in the treatment of pancreatic cancer. To determine whether gemcitabine cytotoxicity is influenced by the equilibrative-sensitive nucleoside transporter (es-NT), basal levels of the es-NT were quantified in three human pancreatic cancer cell lines (PANC-1, HS-766T, and PK-8) and one human bladder cancer cell line (MGH-U1) by flow cytometric analysis, and the results were compared with gemcitabine cytotoxicity assessed by clonogenic assay. To determine whether the salvage pathway of DNA synthesis can be up-regulated by inhibiting de novo DNA synthesis, combination experiments were carried out using the thymidylate synthase (TS) inhibitors 5-fluorouracil or raltitrexed with gemcitabine in a concurrent and sequential fashion. No relationship between basal es-NT and gemcitabine cytotoxicity was demonstrated. For two pancreatic cell lines, sequence-dependent effects of the combination of TS inhibitors and gemcitabine were seen with maximum effect when the TS inhibitors preceded gemcitabine. This was also associated with a significant increase in es-NT levels caused by the TS inhibitors. Thus, modulation of the es-NT by pretreatment with TS inhibitors may have the potential to improve the therapeutic benefit of gemcitabine.
منابع مشابه
Human equilibrative nucleoside transporter 1, as a predictor of 5-fluorouracil resistance in human pancreatic cancer.
BACKGROUND The purpose of this study was to find a novel biomarker to predict 5-fluorouracil (5-FU) or gemcitabine (2',2'-difluoro-deoxycytidine) sensitivity in pancreatic cancer. MATERIALS AND METHODS The relationship between 5-FU and gemcitabine sensitivity and the mRNA levels of human equilibrative nucleoside transporter 1 (hENT1), thymidylate synthase (TS) and dihydropyrimidine dehydrogen...
متن کاملNucleoside transporter profiles in human pancreatic cancer cells: role of hCNT1 in 2',2'-difluorodeoxycytidine- induced cytotoxicity.
PURPOSE Concentrative nucleoside transporter (CNT) 1, CNT3, equilibrative nucleoside transporter (ENT) 1, and, to a lesser extent, ENT2, appear to be the transporters responsible for 2',2'-difluorodeoxycytidine (gemcitabine; Gemzar) uptake into cells. Gemcitabine is used currently in the treatment of pancreatic cancer, but the role of specific nucleoside carrier proteins in gemcitabine cytotoxi...
متن کاملEnhanced efficacy of gemcitabine by indole-3-carbinol in pancreatic cell lines: the role of human equilibrative nucleoside transporter 1.
Pancreatic cancer patients treated with gemcitabine (2',2'-difluorodeoxycytidine) can eventually develop resistance. Recently, published data from our laboratory demonstrated enhanced efficacy of gemcitabine with the dietary agent, indole-3-carbinol (I3C). The current study examined the possible mechanism for this I3C-enhanced efficacy. Several pancreatic cell lines (BxPC-3, Mia Paca-2, PL-45, ...
متن کاملHuman equilibrative nucleoside transporter 1 is associated with the chemosensitivity of gemcitabine in human pancreatic adenocarcinoma and biliary tract carcinoma cells.
Gemcitabine has been one of the most commonly used agents for pancreatic adenocarcinoma chemotherapy, but the determinants of the sensitivity of and resistance to this agent are not yet fully understood. In this study with pancreatic carcinoma and biliary tract carcinoma cell lines, we examined the gene expression levels of nucleotide transporters and others related to the metabolism of gemcita...
متن کاملBreaking Advances Highlights from Recent Cancer Literature
Pancreatic cancers are inherently refractory to conventional chemotherapies. Gemcitabine [20,20-difluoro-20deoxycytidine (dFdC)] is currently used as a first-line treatment against locally advanced and metastatic adenocarcinoma of the pancreas. Gemcitabine is phosphorylated intracellularly to its active diphosphate (dFdC-DP) and triphosphate (dFdC-TP) forms that inhibit DNA and RNA replication....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 21 شماره
صفحات -
تاریخ انتشار 2000